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A theoretical investigation of the breakdown of the viscous wake downstream of a
flat plate in supersonic flow is performed in this paper based on the large Reynolds
number (Re → ∞) asymptotic analysis of the Navier–Stokes equations. The breakdown
is provoked by an oblique shock wave impinging on the wake a small distance ls
downstream of the plate trailing edge. Two flow regimes are considered. In the first ls
is assumed to be an O(Re−3/8) quantity in which case the shock impinges on the wake
within the region of viscous–inviscid interaction that is known to occupy a vicinity
of the trailing edge with longitudinal extent of O(Re−3/8). Under these conditions
the interaction process may be described by the equations of the triple-deck theory.
To obtain a numerical solution of these equations we used a rapid matrix Thomas
technique in conjunction with Newton iterations. The results of the calculations not
only predict the wake breakdown near the shock location but also reveal a hysteresis
behaviour of the flow as the shock is moved downstream, giving rise to three solution
branches. The second part of the paper is concerned with the flow regime when the
shock interacts with the wake further downstream of the trailing edge triple-deck
region: ls � Re−3/8. In this case the fluid motion proves to be inviscid to leading order
not only in the upper deck of the interaction region but also everywhere inside the
wake. Due to this simplification the interaction problem can be reduced to a single
integro-differential equation governing the pressure distribution along the interaction
region. With known pressure the Bernoulli equation may be used to find the velocity
field. The Bernoulli equation also allows us to formulate a simple criterion which may
be used to predict the onset of wake breakdown. We found that viscosity becomes
important again in a smaller vicinity of the breakdown point where the flow reversal
takes place. It is remarkable that the viscous–inviscid interaction problem governing
the flow in this vicinity admits an analytical solution.

1. Introduction
This study was undertaken as a first step in developing an asymptotic theory of

vortex breakdown in supersonic flow. It was motivated by numerous experimental
investigations of the phenomenon and an observation that the vortex breakdown
proceeds very much in the same way as the boundary-layer separation provoked by
an impinging shock wave.

The phenomenon of vortex breakdown has attracted significant attention during the
last forty years. While a majority of publications in this field have been concerned with
incompressible flows (see, for example, Benjamin 1962; Sarpkaya 1971; Hall 1972;
Leibovich 1978, 1984; Delery 1994), a significant body of information has also been
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collected on the interaction of streamwise vortices with shock waves in supersonic
flows. Gustintsev et al. (1969) and Zataloka et al. (1978) were, apparently, the first to
notice that, when a streamwise vortex encounters a shock wave, a breakdown (also
called ‘vortex bursting’) may be observed. If it happens, say, in front of an aircraft
engine, then the quality of the intake flow can be seriously compromised. To model
this situation Zataloka et al. (1978) investigated the interaction of a wing-tip vortex
with a bow shock in front of a choked Pitot-type inlet.

Subsequently, detailed experiments on different aspects of supersonic vortex
breakdown were conducted by Delery et al. (1984), Glotov (1989), Ivanyushkin et al.
(1989), Metwally et al. (1989), Cattafester & Settles (1992), Kalkhoran & Sforza
(1994), Kalkhoran (1994), Smart & Kalkhoran (1995) and Kalkhoran et al. (1996,
1998). They observed that if a vortex is generated in a supersonic flow by, say, a
tip of a wing and then after convecting some distance downstream intersects a bow
shock wave, then a significant part of the flow upstream of the shock may be affected.
In fact the vortex–shock interaction process proved to be dependent on the intensity
of swirling motion in the vortex, the deficit of axial velocity at the vortex centre
and the shock strength, i.e. the value by which the pressure jumps across the shock.
If the shock is weak, then the vortex passes through the shock almost unaffected.
However, on increasing the pressure jump the thickening of the vortex core becomes
more pronounced, and the shock front starts to deform, curving towards the incoming
vortex. The vortex breakdown takes place at a critical value of the pressure jump
across the shock. Further strengthening of the shock results in the formation of a
conical recirculation region. By this stage the bow shock is completely destroyed,
being substituted by a conical shock with its apex situated at the point of breakdown.
The apex moves upstream as the shock strength increases.

Starting with Gustintsev et al. (1969) and Zataloka et al. (1978) a number of
authors commented that the supersonic vortex breakdown very much resembles the
interaction of a shock wave with the boundary layer on a rigid body surface. This
phenomenon was the focus of attention of many experimentalists (see, for example,
a review by Chapman et al. 1956) starting with Ferri (1939). In a typical experiment
the flow is composed of the boundary layer developing along a solid body, say a
flat plate, which is aligned with the oncoming flow and a shock wave produced by
a wedge installed above the plate. The shock impinges upon the boundary layer at
some point S on the plate surface, and the task is to study the perturbations produced
in the flow due to the interaction of the shock and boundary layer.

The interest in this problem was mainly due to the fact that the observations showed
an unexpected character of the flow. If one attempts to predict the flow behaviour
based on the classical Prandtl (1904) theory of high Reynolds number flows then,
as a first step of Prandtl’s hierarchical procedure, the main body of the flow (where
the fluid motion may be treated as inviscid) should be considered. At a supersonic
speed the governing Euler equations are hyperbolic; they do not allow upstream
propagation of perturbations. This suggests that the inviscid flow field should remain
unperturbed everywhere in front of the incident shock. Turning next to the viscous
boundary layer that forms along the body surface, it is known that Prandtl’s equations
for the boundary layer are parabolic, and therefore the flow in the boundary layer is
also incapable of conducting any perturbation upstream of point S.

These theoretical arguments proved to fail completely in predicting the real
behaviour of the flow. The experiments invariably showed that even when the shock
was weak a thickening of the boundary layer started upstream of point S. The
perturbations proved to be capable of propagating upstream through the boundary
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layer over a distance that exceeds significantly the thickness of the boundary layer.
The boundary-layer separation was observed at a critical value of the pressure jump
across the shock, and then the separation point started to move upstream as the
shock strength was increased. It was further established that the boundary layer
was perturbed even upstream of the separation point. Here an increase of pressure
caused the streamlines in the boundary layer to deviate from the wall, giving rise to a
secondary shock. Together with the primary shock it forms the so-called λ-structure.

There have been many attempts to give a theoretical explanation of the upstream
influence through the boundary layer. A history of the development of ideas in
this field was recently given by Lighthill (2000) who was the first to produce a
consistent theory of the boundary-layer interaction with an oblique shock wave under
an assumption that the shock was weak (see Lighthill 1953). Linear analysis of
perturbations was used in this theory similar to that in the hydrodynamic stability
theory. As a result it was shown, in particular, that the upstream influence of the
shock extends over an O(Re−3/8) region; Re being the Reynolds number.

This development led ultimately to the creation of the asymptotic theory of viscous–
inviscid interaction also known as the triple-deck theory which gave a complete and
systematic description of physical processes involved in the separation process. For
the supersonic boundary-layer separation caused by an impinging shock or any other
perturbation causing an abrupt pressure rise in the boundary layer (like a compression
ramp or forward facing step) the theory was developed independently by Neiland
(1969) and Stewartson & Williams (1969). At the same time Messiter (1970) arrived
independently at the triple-deck formulation in the course of an investigation of the
incompressible flow near the trailing edge of a flat plate. Two years later Sychev (1972)
demonstrated that the theory may be also used to describe a classical problem of
the boundary-layer separation from a smooth body contour, say a circular cylinder,
in incompressible flow. All these works were based on asymptotic analysis of the
Navier–Stokes equations with Re → ∞ using the principle of matched asymptotic
expansions.

Later it became clear that the triple-deck viscous–inviscid interaction theory
governs a wide variety of fluid dynamic phenomena, including boundary-layer
separation in subsonic, transonic and supersonic flows, development of different
modes of instabilities, bifurcation and possible hysteresis in high Reynolds number
flows. Application of the theory to incompressible separated flows is presented in a
monograph by Sychev et al. (1998) which describes the separation from a smooth
body surface, incipient and large-scale separations at angular points of the body
contour, separation at the trailing edge of a thin aerofoil appearing as a result of
increase of the angle of attack or the aerofoil thickness, leading-edge separation, etc.

In the first part of this paper (§ § 2–4) we shall use the triple-deck theory to describe
the process of the interaction of an oblique shock wave with the wake downstream
of a flat plate. The symmetrical problem of supersonic flow past a flat plate free
of shock waves was considered by Daniels (1974). He found that the fluid in the
boundary layer is subject to an acceleration when moving from the plate surface
into the wake. No flow separation could be expected in this flow, which allowed a
relatively simple numerical treatment of the flow in the triple-deck region occupying
an O(Re−3/8) vicinity of the trailing edge. We add to the Daniels’ (1974) formulation
a shock wave impinging on the wake at a point S. The distance ls between point S

and the trailing edge of the flat plate is assumed to be an O(Re−3/8) quantity allowing
the triple-deck theory to remain applicable. However, from a numerical point of view
the problem becomes significantly more complicated. We shall see that the impinging
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Figure 1. The flow layout.

shock not only can cause the breakdown of the wake near point S but also the
solution bifurcates, with one of the branches representing the flow with boundary-
layer separation on the plate surface. An advanced numerical method based on a
rapid matrix Thomas technique has been used to study the flow behaviour. This
method is described in § 2, with the results of calculations presented in § 3.

The second part of the paper (§ 5 and § 6) is concerned with the flow regime when
the shock wave is moved further downstream, i.e. ls � Re−3/8. An incompressible
version of the problem was earlier considered by Sychev (1978); see also chapter 5
in Sychev et al. (1998). Our analysis in § 5 shows that the deceleration of the flow
in the wake, caused by the impinging shock, is predominantly inviscid. Due to this
simplification the interaction problem can be reduced to a single integro-differential
equation governing the pressure rise prior to the wake breakdown. The viscosity
becomes important again in a smaller vicinity of the point of flow reversal (§ 6).

2. Formulation of the problem
Let a flat plate be placed in supersonic flow of a perfect gas such that the plate

surface is parallel to the free-stream velocity vector. Let further a shock wave be
generated be a wedge installed above the plate as shown in figure 1, and impinges
upon the wake at point S.

We denote the plate length by L; the velocity, density, viscosity and pressure in
the unperturbed flow upstream of the plate are denoted by U∞, ρ∞, µ∞ and p∞
respectively. To study the flow we shall use Cartesian coordinate system x̂Oŷ with
x̂ measured parallel to the plate from its leading edge, and ŷ in the perpendicular
direction. The velocity components in these coordinates are denoted by û and v̂. We
also need to introduce the gas density ρ̂, pressure p̂, enthalpy ĥ and viscosity µ̂.
The ‘hat’ is used here for dimensional variables. The non-dimensional variables are
introduced as

û = U∞u, v̂ = U∞v, ρ̂ = ρ∞ρ,

p̂ = p∞ + ρ∞U 2
∞p, ĥ = U 2

∞h, µ̂ = µ∞µ,

x̂ = Lx, ŷ = Ly.
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In what follows an asymptotic analysis of the Navier–Stokes equations will be
conducted assuming that the Reynolds number

Re =
ρ∞U∞L

µ∞
→ ∞.

2.1. Boundary-layer flow

Both in the boundary layer on the plate surface and in the wake downstream of the
plate trailing edge the solution of the Navier–Stokes equations may be represented
in the form of the asymptotic expansions

u(x, y; Re) = U0(x, Y ) + · · · , v(x, y; Re) = Re−1/2V0(x, Y ) + · · · ,
ρ(x, y; Re) = ρ0(x, Y ) + · · · , p(x, y; Re) = Re−1/2P1(x, Y ) + · · · ,
h(x, y; Re) = h0(x, Y ) + · · · , µ(x, y; Re) = µ0(x, Y ) + · · · ,


 (2.1)

where the coordinate normal to the wall is scaled as

y = Re−1/2Y.

Substitution of (2.1) into the Navier–Stokes equations leads to the classical boundary-
layer equations

ρ0U0

∂U0

∂x
+ ρ0V0

∂U0

∂Y
=

∂

∂Y

(
µ0

∂U0

∂Y

)
, (2.2a)

ρ0U0

∂h0

∂x
+ ρ0V0

∂h0

∂Y
=

1

Pr

∂

∂Y

(
µ0

∂h0

∂Y

)
+ µ0

(
∂U0

∂Y

)2

, (2.2b)

∂(ρ0U0)

∂x
+

∂(ρ0V0)

∂Y
= 0, (2.2c)

h0 =
1

(γ − 1)M2
∞

1

ρ0

. (2.2d)

Here Pr is the Prandtl number, γ is the specific heat ratio and M∞ is the free-stream
Mach number defined as

M∞ =
U∞

a∞
, a∞ =

√
γ

p∞

ρ∞
.

We shall assume that M∞ is a finite quantity greater than one.
Equations (2.2) should be solved with the free-stream conditions at the leading

edge of the flat plate

U0 = 1, h0 =
1

(γ − 1)M2
∞

at x = 0, Y ∈ [0, ∞) (2.3)

as well as at the outer edge of the boundary layer including the wake

U0 = 1, h0 =
1

(γ − 1)M2
∞

at Y = ∞, x ∈ [0, ∞). (2.4)

On the plate surface the no-slip condition holds:

U0 = V0 = 0 at Y = 0, x ∈ [0, 1]. (2.5)
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It should be supplemented with a thermal condition. For example, we can assume
that the wall temperature is given as a function of x, i.e.

h0 = F (x) at Y = 0, x ∈ [0, 1] (2.6a)

or the wall is thermally isolated

∂h0

∂Y
= 0 at Y = 0, x ∈ [0, 1]. (2.6b)

Boundary-value problem (2.2)–(2.6) admits a self-similar solution for thermally
isolated wall (2.6b) as well as in the case when the wall temperature is known to
be constant, i.e. function F (x) in (2.6a) does not depend on x. However, we do not
need to restrict ourselves to these particular flow conditions. If they are not satisfied
then the boundary-value problem (2.2)–(2.6) may be solved numerically. To proceed
further we only need to know that the solution remains smooth when the trailing
edge of the plate is approached. Therefore we shall assume that the sought functions
U0, h0, ρ0 and µ0 may be represented in the form of Taylor expansions

U0(x, Y ) = U00(Y ) + (−s)U01(Y ) + · · ·
h0(x, Y ) = h00(Y ) + (−s)h01(Y ) + · · ·
ρ0(x, Y ) = ρ00(Y ) + (−s)ρ01(Y ) + · · ·
µ0(x, Y ) = µ00(Y ) + (−s)µ01(Y ) + · · ·


 as s = x − 1 → 0−. (2.7)

The leading-order terms in (2.7) exhibit the following behaviour near the plate surface

U00(Y ) = λY + · · ·
h00(Y ) = hw + · · ·
ρ00(Y ) = ρw + · · ·
µ00(Y ) = µw + · · ·


 as Y → 0, (2.8)

where λ, hw , ρw , µw are positive constants representing the dimensionless skin friction,
enthalpy, density and viscosity on the wall surface.

2.2. Triple-deck region

A vicinity of the trailing edge of the plate is known to be occupied by the viscous–
inviscid interaction region where the boundary layer and external inviscid flow are
mutually dependent on one another. For supersonic flow past a flat plate it was
first studied by Daniels (1974). Based on the asymptotic analysis of the Navier–
Stokes equations with Re → ∞ he demonstrated that similar to the corresponding
incompressible flow (Messiter 1970) the region of interaction is O(Re−3/8) long and
has a three-tiered structure shown in figure 2. It is composed of the viscous sublayer
(region 1 in figure 2), the main part of the boundary layer (region 2) and an inviscid
potential flow region 3 situated outside the boundary layer.

The characteristic thickness of the viscous sublayer is estimated as being an
O(Re−5/8) quantity, so that it occupies an O(Re−1/8) portion of the boundary layer
and is comprised of the stream filaments immediately adjacent to the wall. The
flow velocity in this region is O(Re−1/8) relative to the free-stream velocity, and
due to the slow motion of gas here the flow exhibits high sensitivity to pressure
variations. Even a small variation of pressure along the wall may cause significant
deceleration/acceleration of fluid particles there. As a result the flow filaments change
their thickness leading to a deformation of streamlines. This process is termed the
displacement effect of the boundary layer. Quantitatively it may be characterized by
the angle ϑ = arctan(v/u) made by the velocity vector with the x-axis.
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Figure 2. Three-tiered structure of the interaction region.

The main part of the boundary layer, the middle tier of the interactive structure,
represents a continuation of the conventional boundary layer developing along the
plate. Its thickness is estimated as O(Re−1/2) and the velocity is an order-one quantity.
The flow in this tier is significantly less sensitive to the pressure variations. It does not
produce any noticeable contribution to the displacement effect of the boundary layer,
which means that all the streamlines in the middle tier are parallel to each other and
carry the deformation produced by the displacement effect of the viscous sublayer.

Finally, the upper tier is situated in the potential flow region outside the boundary
layer. It serves to ‘convert’ the perturbations in the form of the streamlines into
perturbations of pressure. These are then transmitted through the main part of the
boundary layer back to the sublayer. We shall assume here that the shock impinges
upon the boundary layer within the interaction region, i.e. ls = O(Re−3/8) (see figure 1).
As the velocity in the viscous sublayer u =O(Re−1/8) the breakdown of the wake may
be expected to take place when the pressure rise in the impinging shock reaches a
critical value of order �p ∼ u2 ∼ Re−1/4.

It should be noted that the trailing edge flow with no impinging shock waves
considered by Daniels (1974) was symmetrical with respect to the x-axis. This allowed
him to restrict the analysis to the upper half of the interaction structure shown
figure 2. With the shock wave present one has to keep in mind that in reality the
viscous sublayer (region 1) extends over a distance y ∼ Re−5/8 into the flow below
the plate. The boundary layer on the lower side of the plate forms region 2′ which is
similar to region 2, and further below lies potential supersonic flow region 3′.

Asymptotic analysis of the Navier–Stokes equations in region 1 is based on the
limit

X∗ =
x − 1

Re−3/8
= O(1), Y∗ =

y

Re−5/8
= O(1), Re → ∞.

Since the flow in this region is slow (u ∼ Re−1/8), it can be treated as incompressible
to the leading order. Based on the matching with the boundary-layer solution (2.7),
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(2.8) one can conclude that the gas density equals ρw and viscosity µw throughout
region 1. The velocity components u, v and pressure p are represented in the form of
asymptotic expansions

u(x, y; Re) = Re−1/8U ∗(X∗, Y∗) + · · · ,
v(x, y; Re) = Re−3/8V ∗(X∗, Y∗) + · · · ,
p(x, y; Re) = Re−1/4P ∗(X∗, Y∗) + · · · .


 (2.9)

Substitution of (2.9) into the Navier–Stokes equations leads to the Prandtl boundary-
layer equations

ρwU ∗ ∂U ∗

∂X∗
+ ρwV ∗ ∂U ∗

∂Y∗
= −dP ∗

dX∗
+ µw

∂2U ∗

∂Y 2
∗

, (2.10a)

∂U ∗

∂X∗
+

∂V ∗

∂Y∗
= 0. (2.10b)

These should be solved with the no-slip condition on both sides of the plate

U ∗ = V ∗ = 0 at Y∗ = ±0, X∗ � 0 (2.11)

and the matching condition with the solution (2.1), (2.7), (2.8) in boundary-layer
upstream of the interaction region

U ∗ =

{
λY∗ + · · · as X∗ → −∞, Y∗ � 0,

−λY∗ + · · · as X∗ → −∞, Y∗ � 0.
(2.12)

Here the symmetry of the boundary-layer flow on the upper and lower sides of the
plate has been taken into account.

It may be shown (see the Appendix) that a solution of the boundary-layer equations
(2.10) subject to the initial conditions (2.12) exhibits the following behaviour at the
upper and lower edges of the viscous sublayer (region 1)

U ∗ =

{
λY∗ + A∗

+(X∗) + · · · as Y∗ → ∞,

−λY∗ + A∗
−(X∗) + · · · as Y∗ → −∞.

(2.13)

Functions A∗
+(X∗) and A∗

−(X∗) are termed the displacement functions. The reason for
this may be explained by using (2.13) in the continuity equation (2.10b). We find

V ∗ =




−dA∗
+

dX∗
Y∗ + · · · as Y∗ → ∞,

−dA∗
−

dX∗
Y∗ + · · · as Y∗ → −∞.

(2.14)

Combining (2.9), (2.13) and (2.14) together shows that the streamline slope angle at
the upper and lower edges of the viscous sublayer

ϑ = arctan

(
v

u

)
= Re−1/4 V ∗

U ∗ + · · ·

=




Re−1/4

(
−1

λ

dA∗
+

dX∗

)
+ · · · as Y∗ → ∞,

Re−1/4

(
1

λ

dA∗
−

dX∗

)
+ · · · as Y∗ → −∞.

(2.15)

Of course, functions A∗
+(X∗) and A∗

−(X∗) are not known in advance. Instead they
have to be calculated by solving the problem of viscous–inviscid interaction. To
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complete the formulation of this problem we need to supplement (2.10)–(2.13) with
the interaction law that serves to relate the induced pressure P ∗ to A∗

+(X∗) and
A∗

−(X∗). We note that the streamline slope ϑ does not change across the main part
of the boundary layer, shown as region 2 in figure 2, and its counterpart, region 2′,
situated in the flow below the plate. This means that formulae (2.15) prove to be valid
at the ‘bottom’ of region 3 and at the ‘top’ of region 3′ where they can be used to
formulate the boundary conditions for the equations governing the flow outside the
boundary layer.

Guided by (2.15) we seek the solution in regions 3 and 3′ in the form of asymptotic
expansions

u(x, y; Re) = 1 + Re−1/4u1(X∗, y∗) + · · · ,
v(x, y; Re) = Re−1/4u1(X∗, y∗) + · · · ,
ρ(x, y; Re) = 1 + Re−1/4ρ1(X∗, y∗) + · · · ,
p(x, y; Re) = Re−1/4p1(X∗, y∗) + · · · ,

h(x, y; Re) =
1

(γ − 1)M2
∞

+ Re−1/4h1(X∗, y∗) + · · · .




(2.16)

Here X∗, y∗ are scaled coordinates

x = 1 + Re−1/4X∗, y = Re−1/4y∗,

assumed to be order one quantities in regions 3 and 3′.
Substitution of (2.16) into the Navier–Stokes equations yields

∂u1

∂X∗
= − ∂p1

∂X∗
, (2.17a)

∂v1

∂X∗
= −∂p1

∂y∗
, (2.17b)

∂h1

∂X∗
=

∂p1

∂X∗
, (2.17c)

∂u1

∂X∗
+

∂ρ1

∂X∗
+

∂v1

∂y∗
= 0, (2.17d)

h1 =
γ

γ − 1
p1 − 1

(γ − 1)M2
∞

ρ1. (2.17e)

Eliminating u1, v1, ρ1 and h1 from (2.17) one can easily see that the pressure
perturbations in regions 3 and 3′ are governed by the wave equation

(
M2

∞ − 1
)∂2p1

∂X2
∗

− ∂2p1

∂y2
∗

= 0. (2.18)

The boundary condition for this equation is formulated by setting y∗ = 0 in (2.17b),

∂p1

∂y∗

∣∣∣∣
y∗=0

= − ∂v1

∂X∗

∣∣∣∣
y∗=0

. (2.19)

The distribution of v1(X∗, 0) at the ‘bottom’ of region 3 and at the ‘top’ of region 3′

may be found through matching of the streamline slop angle ϑ . In regions 2 and 2′

(see figure 2) it is given by (2.15). Using (2.16), we can see that in regions 3 and 3′

ϑ =
v

u
= Re−1/4v1(X∗, y∗) + · · · ,
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and therefore, the matching condition states

v1|y∗=0+ = −1

λ

dA∗
+

dX∗
, v1|y∗=0− =

1

λ

dA∗
−

dX∗
. (2.20)

The general solution of (2.18) has the form

p1 = f (ξ ) + g(η), (2.21)

where f and g are arbitrary function of

ξ = X∗ −
√

M2
∞ − 1 y∗ and η = X∗ +

√
M2

∞ − 1 y∗,

respectively. The flow in region 3′ is assumed to be free of any perturbations except
those produced by the displacement effect of the boundary layer. Therefore, function
f (ξ ) which describes the pressure waves impinging upon the boundary layer, should
be excluded from (2.21). Function g(η) is easily found by substituting (2.21) and the
second of equations (2.20) into (2.19). This yields

g(x∗) = − 1

λ
√

M2
∞ − 1

dA∗
−

dX∗
.

It remains to set y∗ = 0 in (2.21) and we will find that the pressure induced by the
supersonic flow in region 3′ at the lower edge of the boundary layer (including the
wake) is calculated as

P ∗
− = − 1

λ
√

M2
∞ − 1

dA∗
−

dX∗
. (2.22)

In region 3, which is situated above the boundary layer (see figure 2), the role of
functions f (ξ ) and g(η) in (2.21) is different. Now g(η) represents perturbations
produced by an external source situated above the plate and upstream of the
interaction region. In particular, a wedge may be used to generate a shock wave
which then impinges upon the boundary layer. In this case function g(η) should be
written as

g(η) = P̄ sH (η − X̄s). (2.23)

Here H is the Heaviside function,

H (η) =

{
0 if η < 0,

1 if η � 0.

We assume that the pressure jump across the shock �p = Re−1/4P̄ s with P̄ s being an
order-one parameter. We further assume that the shock impinges upon the wake (see
figure 1) at a position ls = Re−3/8X̄s . This gives rise to the second parameter X̄s in the
above formula for g(η).

In order to find function f (ξ ) we substitute (2.21) together with the first of equations
(2.20) into (2.19). We find

f (X∗) = g(X∗) − 1

λ
√

M2
∞ − 1

dA∗
+

dX∗
. (2.24)

Setting y∗ = 0 in (2.21) and using (2.23) and (2.24), we arrive at a conclusion that the
pressure at the upper edge of the boundary layer

P ∗
+ = 2P̄ sH (X∗ − X̄s) − 1

λ
√

M2
∞ − 1

dA∗
+

dX∗
. (2.25)
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To close the interaction problem it remains to note that the pressure does not
change across the boundary layer, and therefore

P ∗
+ = P ∗

− for all X∗ � 0. (2.26)

We shall now demonstrate that using new curvilinear coordinates

X̄ = X∗, Ȳ = Y∗ − F (X̄) (2.27)

the interaction problem (2.10)–(2.13), (2.22)–(2.26) may be recast into a form that
represents a symmetrical flow near the trailing edge with two shock waves, of equal
strength, impinging from above and below upon the wake at point X̄s . According to
the Prandtl transposition theorem, the boundary-layer equations (2.10) are invariant
with respect to the coordinate transformation (2.27) with arbitrary function F (X̄)
provided that the sought fluid dynamic functions are transformed as

U ∗ = Ū , V ∗ = V̄ +
dF

dX̄
Ū , P ∗ = P̄ ,

A∗
+ = Ā+ − λF, A∗

− = Ā− + λF.


 (2.28)

Indeed, substitution of (2.27), (2.28) into (2.10) results in

ρwŪ
∂Ū

∂X̄
+ ρwV̄

∂Ū

∂Ȳ
= −dP̄

dX̄
+ µw

∂2Ū

∂Ȳ 2
, (2.29a)

∂Ū

∂X̄
+

∂V̄

∂Ȳ
= 0. (2.29b)

If we assume that F (X̄) = 0 for all X̄ � 0 then the no-slip conditions (2.11) remain
unchanged

Ū = V̄ = 0 at Ȳ = ±0, X̄ � 0. (2.30)

The initial conditions (2.11) preserve their form

Ū =

{
λȲ ∗ + · · · as X̄ → −∞, Ȳ � 0,

−λȲ ∗ + · · · as X̄ → −∞, Ȳ � 0,
(2.31)

provided that F (X̄) → 0 as X̄ → −∞.
The conditions at the lower and upper edges of the viscous sublayer (2.13) are

invariant with respect to transformations (2.27), (2.28) for any choice of function
F (X̄):

Ū =

{
λȲ + Ā+(X̄) + · · · as Ȳ → ∞,

−λȲ + Ā−(X̄) + · · · as Ȳ → −∞.
(2.32)

The interaction law (2.22), (2.25) is now written in the form

P̄ − = − 1

λ
√

M2
∞ − 1

(
dĀ−

dX̄
+ λ

dF

dX̄

)
,

P̄ + = 2P̄ sH (X̄ − X̄s) − 1

λ
√

M2
∞ − 1

(
dĀ+

dX̄
− λ

dF

dX̄

)
.

Therefore, if we choose

F (X̄) =

{
0 if X̄ < X̄s,

−
√

M2
∞ − 1 P̄ s(X̄ − X̄s) if X̄ � X̄s,
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then the interaction law takes the form

P̄ − = P̄ sH (X̄ − X̄s) − 1

λ
√

M2
∞ − 1

dĀ−

dX̄
, (2.33a)

P̄ + = P̄ sH (X̄ − X̄s) − 1

λ
√

M2
∞ − 1

dĀ+

dX̄
, (2.33b)

and all the equations (2.29)–(2.33) involved in the formulation of the interaction
problem prove to be symmetrical with respect to the X̄-axis.

The physical meaning of this result is quite simple. We have demonstrated that the
new longitudinal coordinate X̄ coincides with the dividing streamline which leaves
the flat plate at the trailing edge. The velocity field Ū , V̄ and the displacement
functions Ā+, Ā+ are symmetrical with respect to this streamline. It remains straight
and parallel to the plate surface up to the point X̄s where it turns down through an
angle which should be chosen in such a way that the reflected shock (that would form
in the flow above the wake if its axis remained straight) is cancelled by the expansion
fan produced at the turning point. Instead a shock wave is formed at X̄s in the flow
below the wake. It generates the pressure jump �p =Re−1/4P̄ s which is equal to that
in the primary shock. As a result the pressure balance (2.26) is kept across the wake
both upstream and downstream of point X̄s .

From now on we shall consider only the flow above the X̄-axis. Using the affine
transformations

X̄ =
µ−1/4

w ρ−1/2
w

λ5/4β3/4
X, Ȳ =

µ1/4
w ρ−1/2

w

λ3/4β1/4
Y, Ū =

µ1/4
w ρ−1/2

w

λ−1/4β1/4
U,

V̄ =
µ3/4

w ρ−1/2
w

λ−3/4β−1/4
V, Ā+ =

µ1/4
w ρ−1/2

w

λ−1/4β1/4
A, P̄ =

µ1/2
w ρ−1/2

w

λ−1/2β1/2
P,

where β =
√

M2
∞ − 1, we can represent the interaction problem (2.29)–(2.33) in the

following canonical form. The boundary-layer equations are written as

U
∂U

∂X
+ V

∂U

∂Y
= −dP

dX
+

∂2U

∂Y 2
, (2.34a)

∂U

∂X
+

∂V

∂Y
= 0. (2.34b)

They have to be solved with the no-slip conditions on the upper surface of the plate

U = V = 0 at Y = 0, X � 0, (2.34c)

and the symmetry conditions along the wake centreline

∂U

∂Y
= V = 0 at Y = 0, X > 0. (2.34d)

The initial condition is written as

U = Y at X = −∞, (2.34e)

and at the upper edge of the viscous sublayer we have

U → Y + A(x) + · · · as Y → ∞. (2.34f )

The interaction law becomes

P = PsH (X − Xs) − dA

dX
. (2.34g)
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Here

Ps =
µ−1/2

w ρ1/2
w

λ1/2β−1/2
P̄ s, Xs =

µ1/4
w ρ1/2

w

λ−5/4β−3/4
X̄s

are two similarity parameters controlling the flow in the interaction region.
Finally, we have to take into account that viscous–inviscid interaction allows for

upstream influence through the boundary layer even in well-attached flows (see
Lighthill 1953). This means that an additional boundary condition specifying the
state of the flow downstream of the interaction region is required. We shall assume
that

P = Ps at X = ∞. (2.34h)

This condition closes the formulation of the interaction problem (2.34).

3. Numerical method
To study the behaviour of the flow in the interaction region, the solution of

equations (2.34) was constructed with the help of the so-called direct method which
proved to be significantly more stable compared to other numerical techniques used
in the the theory of viscous–inviscid interaction. A recent review of these may be
found in the monograph by Sychev et al. (1998, chap. 7). The direct method was used
earlier to study a number of flows, most notably, the incompressible flow near the
trailing edge of a thin aerofoil at an incidence (see Korolev 1989) and, more recently,
supersonic flow past a compression ramp (Korolev et al. 2002).

In the version of this method adopted in the present study a uniform grid

(Xj, Yk),

{
j = 1, . . . , N,

k = 1, . . . , M,

is used to represent the governing equations (2.34) in a finite-difference form. With
j = je assumed to correspond to the trailing edge

Xj = �X(j − je), Yk = �Y (k − 1).

Here �X and �Y are the mesh steps in X- and Y -directions respectively. The grid
functions {Uj,k}, {Vj,k} and {Pj } are introduced according to the rule

Uj,k = U (Xj, Yk), Vj,k = V (Xj, Yk), Pj = P (Xj ).

3.1. Finite-differencing of the governing equations

We shall now describe the manner in which the governing equations (2.34) have been
represented in a finite-difference form. For further purposes it is convenient to express
the resulting algebraic equations as operator equations

Lj,k = 0,

{
j = 1, . . . , N,

k = 1, . . . , M,

where Lj,k are the finite-difference operators acting on the grid functions {Uj,k} and
{Pj }.

We start with the initial condition (2.34e). Choosing the left-hand-side boundary of
the computational domain sufficiently far upstream of the trailing edge, we can write

L1,k = U1,k − �Y (k − 1) = 0, k = 1, . . . , M. (3.1)
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At the outer edge of the viscous sublayer condition (2.34f ) holds. We write it in
the form

∂U

∂Y
= 1 at Y = ∞,

which may be approximated with the second order accuracy as

Lj,M =
3Uj,M − 4Uj,M−1 + Uj,M−2

2�Y
− 1 = 0, j = 2, . . . , N. (3.2)

The no-slip condition on the plate surface (2.34c) and symmetry condition along
the wake axis (2.34d) may be written together in the form

Lj,1 = ν1Uj,1 + ν2Uj,2 + ν3Uj,3 = 0, j = 2, . . . , N, (3.3)

where

(ν1, ν2, ν3) =




(1, 0, 0) for j = 2, . . . , je,(
− 3

2�Y
,

2

�Y
, − 1

2�Y

)
for j = je + 1, . . . , N.

Now we turn to the internal mesh points where the corresponding operator
equations may be obtained by finite-differencing the momentum equation (2.34a).
On the second mesh line (j =2) we use a modification of the Crank & Nicolson
(1947) scheme with windward approximation of the derivative ∂U/∂Y :

L2,k =
U2,k + U1,k

2

U2,k − U1,k

�X
+ V2− 1

2 ,k

DY {U2,k} + DY {U1,k}
2

+
P2 − P1

�X
− DYY {U2,k} + DYY {U1,k}

2
= 0, k = 2, . . . , M − 1. (3.4)

Here DY {Uj,k} and DYY {Uj,k} denote the finite-difference representations of the first-
and second-order derivatives of U with respect to Y centred at point (j, k). The
first-order derivative is calculated as

DY {Uj,k} = κ1Uj,k+2 + κ2Uj,k+1 + κ3Uj,k + κ4Uj,k−1 + κ5Uj,k−2, (3.5)

where

κ1 =
α − 1

4�Y
, κ2 = −α − 1

�Y
, κ3 =

3α

2�Y
, κ4 = −α + 1

�Y
, κ5 =

α + 1

4�Y
.

and

α =




sign V2−1/2,k if k 	= 2, M − 1,

−1 if k = 2,

1 if k = M − 1.

Note that upward and downward approximations are enforced at the lower and
upper boundaries of the computational domain. For the second-order derivative a
conventional central-difference approximation is used:

DYY {Uj,k} =
Uj,k+1 − 2Uj,k + Uj,k−1

�Y 2
. (3.6)

Finally, the lateral velocity V2−1/2,k is taken in (3.4) halfway between j = 1 and j =2.
It may be expressed via {Uj,k} by direct integration of the continuity equation (2.34b)
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with condition V (X, 0) = 0:

V2−1/2,k = − 1
2
�Y

[
U2,1 − U1,1

�X
+ 2

k−1∑
i=2

U2,i − U1,i

�X
+

U2,k − U1,k

�X

]
.

This allows us to reduce the number of unknowns and to ensure that operators Lj,k

act upon {Uj,k} and {Pj } only.
Moving to the mesh lines situated further downstream (j � 3) we modified the

finite-difference representation of the momentum equation (2.34a) in such a way that it
ensures stability of the method if a region of reversed flow (U < 0) is encountered. This
is achieved by introducing windward approximation for ∂U/∂X. The corresponding
finite-difference operator is written as

Lj,k = Uj,kDX{Uj,k} + Vj,kDY {Uj,k}

+
3Pj − 4Pj−1 + Pj−2

2�X
− DYY {Uj,k} = 0, k = 2, . . . , M − 1, (3.7)

where

DX{Uj,k} = �1Uj+2,k + �2Uj+1,k + �3Uj,k + �4Uj−1,k + �5Uj−2,k,

with

�1 =
β − 1

4�Y
, �2 = −β − 1

�Y
, �3 =

3β

2�Y
, �4 = −β + 1

�Y
, �5 =

β + 1

4�Y
.

and β = signUj,k . The first- and second-order derivatives of U with respect to Y

are given, as before, by formulae (3.5) and (3.6), while for the lateral velocity Vj,k is
calculated as

Vj,k = − 1
2
�Y

[
Dx{Uj,1} + 2

k−1∑
i=2

Dx{Uj,i} + Dx{Uj,k}
]

.

In our calculations finite-difference scheme (3.7) was used for all j =3, . . . N except
on the mesh line j = je +1 situated immediately downstream of the trailing edge. The
reason is that the solution of the interaction problem (2.34) develops a singularity
at the trailing edge. In particular, we shall see that the pressure gradient appears
to be discontinuous at X = 0. Therefore, to improve the stability of the scheme, the
derivatives of U and P with respect to X were approximated by central differences
on the mesh line j = je + 1 in both the momentum and continuity equations leading
to

Lje+1,k = Uje+1,k

Uje+2,k − Uje,k

2�X
+ Vje+1,kDY {Uje+1,k}

+
Pje+2 − Pje

2�X
− DYY DYY {Uje+1,k} = 0, k = 2, . . . , M − 1, (3.8)

where the derivatives of U with respect to Y are given again by (3.6), (3.7) and

Vje+1,k = − 1
2
�Y

[
Uje+2,1 − Uje,1

2�X
+ 2

k−1∑
i=2

Uje+2,i − Uje,i

2�X
+

Uje+2,k − Uje,k

2�X

]
.

It remains to describe the finite-differencing of the interaction law. In order to
exclude the displacement function A(X) from the set of unknowns, we combine
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(2.34f ) and (2.34g) together leading to

P = PsH (X − Xs) − ∂U

∂X

∣∣∣∣
Y→∞

. (3.9)

When representing this equation in finite differences one has to keep in mind that it is
due to the interaction that the upstream influence in the boundary layer is observed.
Hence, in order to ensure that numerical solution of the interaction problem (2.34)
shows dependence on the state of the flow (2.34h) downstream of the trailing edge,
we express the interaction law (3.9) as

Lj,M+1 =
Pj+1 + Pj

2
− Ps

H (Xj+1 − Xs) + H (Xj − Xs)

2

+
Uj+1,M − Uj,M

�X
= 0, j = 1, . . . N − 1. (3.10)

To close the formulation of the finite-difference equations, the downstream condition
(2.34h) is written in the following operator form:

LN,M+1 = PN − Ps = 0. (3.11)

3.2. Matrix Thomas technique

In order to employ the matrix Thomas technique we express the finite-difference
equations in a vector form. For this purpose we introduce a set of vector operators
Lj , each being composed of the scalar finite-difference operators Lk,j , k = 1, . . . , M+1
acting on the grid line X = Xj . We also arrange the unknown quantities into vectors
Ωj by combining together the elements of the velocity grid function Uk,j on the j th
grid line with pressure Pj . We have

Lj =




Lj,1

...
Lj,k

...
Lj,M

Lj,M+1




, Ωj =




Uj,1

...
Uj,k

...
Uj,M

Pj




, j = 1, . . . , N.

We shall also introduce a vector C of governing parameters which may include the
shock strength Ps , its position Xs , etc. The precise composition of this vector is not
important at this stage; we can continue describing the method without defining the
elements of C explicitly.

Using the vector notation one can combine equations (3.1) with the first (j = 1) of
equations (3.10) and write them together in the more compact form

L1(Ω1, Ω2, C) = 0. (3.12)

Similarly, combining the first elements (j =2) of the boundary conditions (3.2) and
(3.3) with the set of equations (3.4) and the second (j = 2) of equations (3.10) results
in

L2(Ω1, Ω2, Ω3, C) = 0. (3.13)

The vector equations for the subsequent grid lines

Lj (Ωj−2, Ωj−1, Ωj , Ωj+1, Ωj+2, C) = 0, j = 3, . . . , N − 2, (3.14)
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are composed of the corresponding elements of equations (3.7) and (3.8), boundary
conditions (3.2), (3.3) and equation (3.10). The dependence of Lj in (3.14) on Ωj+1

and Ωj+2 comes, first of all, from equation (3.7) where the windward finite-difference
operator Dx{Uj,k} is used for representing derivative ∂U/∂X in equation (2.34a).
For all the node points with negative Uj,k this operator is calculated using Uj+1,k

and Uj+2,k . However, when calculating the flow one has to choose the computational
domain such that its right-hand-side boundary is taken far enough downstream of any
region of flow reversal. This means that near the right-hand-side boundary equation
does not really involve Uj+1,k and Uj+2,k . The vector operator Lj , nevertheless,
remains dependent on Ωj+1 due to the interaction equation (3.10). This means that
the equation corresponding to j = N − 1 may be written as

LN−1(ΩN−3, ΩN−2, ΩN−1, ΩN, C) = 0. (3.15)

On the last grid line (j = N ) we use the downstream boundary condition (3.11) instead
of the interaction law (3.10), and therefore the corresponding operator equation is
written as

LN (ΩN−2, ΩN−1, ΩN, C) = 0. (3.16)

To solve (3.12)–(3.16) Newton–Raphson linearization has been used. With Ω̂j , Ĉ
denoting an approximation to the solution given as an initial guess or found from
the previous iteration, an improved approximation

Ωj = Ω̂j + �Ωj , C = Ĉ + �C (3.17)

may be found by substituting (3.17) into (3.12)–(3.16) and making use of the Taylor
expansions. This results in the following linear equations:

∂L1

∂Ω1

�Ω1 +
∂L1

∂Ω2

�Ω2 +
∂L1

∂C
�C = −L1, (3.18)

∂L2

∂Ω1

�Ω1 +
∂L2

∂Ω2

�Ω2 +
∂L2

∂Ω3

�Ω3 +
∂L2

∂C
�C = −L2, (3.19)

∂Lj

∂Ωj−2

�Ωj−2 +
∂Lj

∂Ωj−1

�Ωj−1 +
∂Lj

∂Ωj

�Ωj +
∂Lj

∂Ωj+1

�Ωj+1

+
∂Lj

∂Ωj+2

�Ωj+2 +
∂Lj

∂C
�C = −Lj , j = 3, . . . , N − 2, (3.20)

∂LN−1

∂ΩN−3

�ΩN−3 +
∂LN−1

∂ΩN−2

�ΩN−2 +
∂LN−1

∂ΩN−1

�ΩN−1

+
∂LN−1

∂ΩN

�ΩN +
∂LN−1

∂C
�C = −LN−1, (3.21)

∂LN

∂ΩN−2

�ΩN−2 +
∂LN

∂ΩN−1

�ΩN−1 +
∂LN

∂ΩN

�ΩN +
∂LN

∂C
�C = −LN. (3.22)

For this study two versions of a computer program based on matrix extension
of Thomas elimination algorithm were written. In the first one all the governing
parameters were treated as given, which is equivalent to setting C = 0 in (3.17) and
disregarding the corresponding terms in (3.18)–(3.22). These equations were then
solved based on the recurrent use of the formula

�Ωj = Rj�Ωj+1 + Tj�Ωj+2 + Sj , j = 1, . . . , N − 2. (3.23)
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Here Rj and Tj are (M + 1) × (M + 1) matrices, and Sj an (M + 1)-component
vectors. For j = N − 1 and j = N formula (3.23) reduces to

�ΩN−1 = RN−1�ΩN + SN−1, �ΩN = SN. (3.24)

The calculations were perform by choosing a certain position Xs of the impinging
shock and gradually increasing the shock strength Ps . Using this approach we were
able to construct the solution of the interaction problem for a wide range of variation
of Ps for all Xs < 3.2. At the same time we found that for Xs > 3.2 the Newtonian
iterations converged reasonably well only up to a certain critical value P c

s of shock
strength Ps which was found to be dependent on Xs; beyond P c

s no convergence
could be achieved.

This result came as no surprise to us. Given that Xs is large enough one can expect
two (or more) states of the flow for the same shock strength Ps . Indeed, since the
velocity in the wake grows with the distance Xs downstream of the trailing edge,
the pressure rise that is large enough to cause local flow reversal in the wake at
the position Xs , can also cause a formation of an extended region flow reversal that
starts at an upstream location in the wake or even in the boundary layer on the plate
surface.

To study possible non-uniqueness of the solution a second version of the program
was written. This time the shock strength Ps was treated as an unknown quantity. It
was included as the first element in the governing parameter vector

C =

[
Ps

Us

]
,

with the second element Us being the velocity on the wake axis at the shock location.
Assuming that the shock impinges on the wake at a position where j = js one can
write

Us = Ujs,1. (3.25)

With this approach the full set of equations (3.18)–(3.22) should be considered.
Their solution may be written in the form

�Ωj = Rj�Ωj+1 + Tj�Ωj+2 + Zj�C + Sj , j = 1, . . . , N − 2, (3.26)

which represents an obvious generalization of recurrent formulae (3.23). An additional
Thomas coefficient Zj is an (M + 1) × 2 matrix. For j = N − 1 and j = N formula
(3.26) reduces to

�ΩN−1 = RN−1�ΩN + ZN−1�C + SN−1,

�ΩN = ZN�C + SN.

}
(3.27)

Recursive formulae to calculate the Thomas coefficients Rj , Tj , Zj and Sj may be
deduced in a usual way by substituting (3.26) and (3.27) into equations (3.18)–(3.22).
With known Thomas coefficients formulae (3.27), (3.27) may be rearranged as

�Ωj = Fj�C + Gj , j = 1, . . . , N, (3.28)

where matrices Fj and vectors Gj are calculated recursively using

Fj = Zj + Rj Fj+1 + Tj Fj+2,

Gj = Sj + Rj Gj+1 + Tj Gj+2,

}
j = 1, . . . , N − 2,
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and from (3.27)

FN = ZN, FN−1 = RN−1FN + ZN−1,

GN = SN, GN−1 = RN−1GN + SN−1.

To determine the unknown vector C we need to formulate two additional operator
equations. The first follows directly from (3.25):

Q1 = Ujs,1 − Us = 0. (3.29)

The second depends on the way the calculations are organized. In the present study
we marched along a hysteresis curve in the (Ps, Us)-plane (see, for example, figure 5)
in steps corresponding to a constant arclength, �S = 0.05. If P̄ s , Ū s represent a point
on a hysteresis curve then for the next point (Ps, Us) we have

Q2 = (Ps − P̄ s)
2 + (Us − Ū s)

2 − �S2 = 0. (3.30)

Equations (3.29), (3.30) may be combined into a vector equation

Q(Ω1, . . . , Ωj , . . . , ΩN, C) = 0,

where Q is a two-component vector operator. This equation is linearized in a usual
way leading to

N∑
j=1

∂Q

∂Ωj

�Ωj +
∂Q

∂C
�C + Q = 0. (3.31)

Combining (3.31) with (3.28) we have the following equation:(
N∑

j=1

∂Q

∂Ωj

Fj +
∂Q

∂C

)
�C +

N∑
j=1

∂Q

∂Ωj

Gj + Q = 0,

which should be solved for �C . Then the correction vectors �Ωj may be calculated
by making use of formula (3.28). The solution is then updated using (3.17), and the
iterations are repeated until the convergence is reached.

3.3. Marching scheme

For comparison purposes we also reconstructed the marching method used by a
number of researchers in early calculations of supersonic flows with viscous–inviscid
interaction. In particular, for the trailing-edge flow it was applied by Daniels (1974).
The method is based on the observation that the solution of the interaction problem
(2.34) may be represented far upstream of the trailing edge (X → −∞) in the following
asymptotic form:

P = B eλ0X, U = Y + B eλ0X
λ

1/3
0

Ai′(0)

∫ λ
1/3
0 Y

0

Ai(z) dz. (3.32)

Here Ai(z) is the Airy function, λ0 a universal positive constant related to the
derivative of the Airy function at zero value of the argument:

λ0 = [−3Ai′(0)]3/4.

Finally, factor B represents the amplitude of perturbations produced in the flow by
upstream propagating disturbances.

The calculations were performed based on the vorticity equation

U
∂ω

∂X
+ V

∂ω

∂Y
=

∂2ω

∂Y 2
,
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Figure 3. Comparison of Daniels’ (1974) data (×), marching code (dashed) and direct
matrix solution (solid) for Ps = 0.

which may be easily deduced by differentiating the momentum equation (2.34a) with
respect to Y . We used three-point-backward approximation for ∂ω/∂X in this equation
for mesh point with U > 0 and Reyhner & Flügge-Lotz (1968) approximation in the
region of flow reversal U < 0. Windward difference, similar to (3.5) was used for
∂ω/∂Y , and the viscous term ∂2ω/∂Y 2 was approximated by the central difference
(3.6).

In the marching scheme the calculations are performed successively, moving from
one mesh line Xj to the next Xj+1 situated further downstream. The procedure
involves two iteration processes, local and global. The former is used on each mesh
line Xj to update the velocity components U , V , and to adjust the induced pressure to
the displacement thickness of the boundary layer. The latter is aimed at determining
the perturbation amplitude parameter B in (3.32) in such a way that the downstream
boundary condition (2.34h) is satisfied. Newtonian iterations were used for this
purpose in our calculations.

Similar to the first method this scheme provides second order accuracy with respect
to both x- and y-coordinates.

4. Computational results
The numerical schemes described above were tested on the previously studied

problem of the trailing edge flow with no shock wave, which corresponds to Ps =0.
Daniels (1974) looked at this problem using a multi-grid method based on the stream
function formulation of the interaction problem (2.34a). Figure 3 shows a comparison
between his results and data we obtained for a uniform mesh using both the direct
matrix and marching schemes. We used a mesh of size of �X = 0.01, �Y = 0.05 in the
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P (0) τ (0)

Direct −0.61473 1.78870
Marching −0.55383 1.70716
Daniels −0.6230 1.8026

Table 1. Trailing-edge results for Ps = 0.

Figure 4. Comparison of direct matrix (solid) and marching (dashed) solutions for Xs = 2.6,
Ps = 2.0.

marching scheme and �X = �Y = 0.1 for the direct matrix calculation. The pressure
and skin friction, defined as

τ (X) =
∂U

∂Y

∣∣∣∣
Y=0

,

at the trailing edge are shown in table 1.
We see that there is a good agreement with Daniels’ results, especially for the

direct matrix code. The marching scheme was found to be less accurate which, in our
view, may be explained by apparent weakness of shooting based on the exponentially
small term in the upstream asymptote (3.32). The problem is highlighted in a second
comparison drawn between the two numerical schemes. Figure 4 shows the skin
friction τ , pressure P and streamwise velocity in the wake axis U (X, 0) as found by the
two numerical schemes. In the matrix solution we used a mesh �X = 0.05, �Y = 0.05.
No noticeable change was seen when this mesh was reduced to �X = �Y = 0.1. At the
same time a mesh independent solution was found using the marching code only when
a much finer mesh was used, �X =0.005, �Y = 0.05. Both solutions were calculated
in the (X, Y ) domain [−10, 15] × [0, 10] assuming that Xs = 2.6 and Ps =2.0.
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Figure 5. Hysteresis plots for shock positions from Xs =2.6 to Xs = 4.6.

As a consequence of the inability of the marching scheme to model reverse flow
regions accurately the direct matrix code has been used to produce the remaining
results. The behaviour of the solution, as the shock moves downstream, is shown
in the hysteresis diagram (figure 5). It shows that the solution bifurcates when Xs

reaches a critical value close to 3.2. For all Xs > 3.2 the interaction problem (2.34)
admits three solutions. These were calculated using a mesh in which �X = �Y = 0.2
and (X, Y ) ∈ [−5, 15] × [0, 15].

To ensure that the results were mesh independent, we repeated the calculations for
Xs = 4.6 with four different computational domains. These are marked in figure 6
as ‘+’ for (X, Y ) ∈ [−5, 15] × [0, 15], ‘◦’ for (X, Y ) ∈ [−10, 15] × [0, 15] and ‘×’ for
(X, Y ) ∈ [−5, 15]× [0, 20]; the mesh steps in these calculations were �X = �Y = 0.2.
A second comparison was made by varying the mesh steps. For a shock location
Xs = 3.8, and using the computational domain [−5, 15] × [0, 15], the solution for
�X = �Y = 0.2 is marked in figure 6 with ‘�’ and that for �X = 0.1, �Y =
0.15 with ‘�’. In each case close agreement between the hysteresis curves can be
observed.

Typical behaviour of the solutions on the three branches is shown in figure 7 for two
sets of the governing parameters: Xs = 3.4, Ps ≈ 2.69 and Xs = 4.2, Ps ≈ 3.06. Notice
that negative skin friction on the plate surface (X < 0) and/or negative velocity on
the wake axis (X > 0) manifest a formation of reversed flow regions. These are clearly
seen in figure 8, where the streamline patterns are shown for the flow regimes of
figure 7. In both cases the flow on the lower branch contains an extended separation
region, whilst on the upper branch, no separation is observed.

An important conclusion that may be drawn from the calculation results is that
if we imagine an experiment in which the shock position were kept fixed and above
Xs = 3.2 and the pressure were increased monotonically we would see the sudden
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Figure 6. Comparison plots examining domain and mesh dependence.

formation of a large separation bubble as the pressure Ps reaches its critical value
(see figures 5 and 6) and the solution ‘jumps’ from the upper to lower branch.

5. Inviscid–inviscid interaction
We shall assume now that the shock impinges upon the wake downstream of

the viscous–inviscid interaction region that occupies an O(Re−3/8) vicinity of the
trailing edge. The analysis that follows reveals that in this case the deceleration of
the flow in the wake is predominantly inviscid. The viscosity becomes important only
in a smaller vicinity of the point of flow reversal (§ 6). This explains why inviscid
theoretical models by Mahesh (1996) and Smart & Kalkhoran (1997) proved to give
a good approximation to the vortex breakdown criterion.

To simplify the analysis we shall also assume that the distance ls between the
trailing edge and the point of shock–wake interaction (shown as point S in figure 1)
is still relatively small as compared to the plate length. This restriction allows us,
as we shall see, to treat the pressure in the shock–wake interaction region as being
independent of the transverse coordinate measured across the wake. The assumptions
made may be expressed as

1 � ls � Re−3/8. (5.1)

5.1. Near-wake solution

Before analysing the process of interaction of the shock wave with the wake we need
to know the behaviour of the flow approaching the interaction region. The latter is
expected to occupy a small vicinity of point S (see figure 1). For the flow in the wake
between the trailing edge and interaction region the boundary-layer equations (2.2)
are valid. The boundary conditions at the outer edge of the boundary layer (2.4)
also hold. However, the no-slip conditions (2.5) on the plate surface should now be
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Figure 7. Comparison of the three solution branches at Xs = 3.4, Ps ≈ 2.69 (left) and
Xs = 4.2, Ps ≈ 3.06 (right), where × is upper branch, + middle branch, � lower branch. (a)
Wake axis velocity, U (X, 0); (b) skin friction, τ (X); (c) pressure, P (X).

substituted by the symmetry conditions on the wake axis

V0 =
∂U0

∂Y
=

∂h0

∂Y
= 0 at Y = 0. (5.2)

The solution of the boundary-layer equations close to the trailing edge is given
by the Goldstein (1930) ‘near-wake’ theory; see also Sychev et al. (1998), chap. 3.
Goldstein demonstrated that when the flat plate boundary-layer is continued through
the trailing edge into the wake, a two-tiered structure (shown in figure 9) should be
considered.

In region A which occupies the main part of the wake, asymptotic analysis of the
boundary-layer equations (2.2) is based on the limit

Y = O(1), s = x − 1 → 0+.
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Figure 8. Streamline plots for Xs = 3.4 (left) and Xs = 4.2 (right) on the three branches.
(a) Upper branch, Ps = 2.688; (b) upper branch, Ps = 3.061; (c) mid-branch, Ps = 2.684;
(d) mid-branch, Ps = 3.037; (e) lower branch, Ps =2.688; (f ) lower-branch, Ps =3.084.

Since the solution is expected to be continuous, one can express the leading order
term for U0, h0, ρ0 and µ0 in region A in the form

U0(x, Y ) = U00(Y ) + · · · , h0(x, Y ) = h00(Y ) + · · · ,
ρ0(x, Y ) = ρ00(Y ) + · · · , µ0(x, Y ) = µ00(Y ) + · · · .

}
(5.3)

Functions U00(Y ), h00(Y ), ρ00(Y ) and µ00(Y ) coincide with those in (2.7), and therefore
may be represented at small values of Y by formulae (2.8). Of particular interest here
is the behaviour of the longitudinal velocity component

U00(Y ) = λY + · · · as Y → 0. (5.4)



326 N. W. Battam, D. G. Gorounov, G. L. Korolev and A. I. Ruban

Figure 9. Two-tiered structure of the near-wake flow.

It may be easily seen from (5.3) and (5.4) that the solution in region A does not
satisfy the symmetry condition (5.2) for the derivative of U0. This is why one has to
introduce an additional region B situated near the wake axis.

When describing the flow in region B it is convenient to use the stream function
Ψ0(x, Y ). Based on the continuity equation (2.2c) we define Ψ0(x, Y ) by the equations

∂Ψ0

∂x
= −ρ0V0,

∂Ψ0

∂Y
= ρ0U0. (5.5)

Asymptotic analysis of the boundary-layer equations in region B is based on the limit

ζ =
Y

s1/3
= O(1), s = x − 1 → 0+.

Asymptotic expansions for the stream function, enthalpy, density and viscosity are
written in this region as

Ψ0(x, Y ) = s2/3g(ζ ) + · · · , h0(x, Y ) = hw + s2/3h̄(ζ ) + · · · ,
ρ0(x, Y ) = ρw + s2/3ρ̄(ζ ) + · · · , µ0(x, Y ) = µw + s2/3µ̄(ζ ) + · · · ,

}
(5.6)

and it follows from the first of equations (5.5) that

U0 = s1/3 1

ρw

g′(ζ ) + · · · . (5.7)

Substitution of (5.6) into the momentum equation (2.2a) yields

1
3
g′ 2 − 2

3
gg′′ = µwg′′′. (5.8)

This equation should be solved with the symmetry conditions on the wake axis

g(0) = g′′(0) = 0, (5.9)

and the condition of matching with the solution in region A

g′(ζ ) = λρwζ + · · · as ζ → ∞, (5.10)

which is deduced by comparing (5.7) with formulae (5.3), (5.4) representing U0 in
region A.

Solving the boundary-value problem (5.8)–(5.10) and using formula (5.7) gives the
sought initial profile of the velocity in front of the interaction region.
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Figure 10. Three-tiered structure of the interaction region.

5.2. Shock/wake interaction region

The interaction region that forms in a vicinity of point S (see figure 1) where the
shock wave impinges upon the wake has the three-tiered structure shown in figure 10.
Region 1 represents a continuation of region B which means that its thickness may
be estimated as �y ∼ Re−1/2Y ∼ Re−1/2s1/3. Taking into account that at the shock
position s = ls we have

�y ∼ Re−1/2l1/3
s .

Region 2, being a continuation of region A, occupies the main body of the boundary
layer, y ∼ Re−1/2. These should be supplemented by region 3 that lies outside the
wake and serves to ‘convert’ the perturbations in the slope of the streamlines at the
outer edge of region 2 into perturbations of pressure.

We first perform an order-of-magnitude estimation of fluid functions in the
interaction region, which is termed after Sychev et al. (1998) an ‘inspection’ analysis.
Starting with region 1 we can note that according to (5.7) the longitudinal velocity
component may be estimated in this region as

u ∼ l1/3
s .

Since our goal is to investigate the process of the wake breakdown, we have to assume
that the velocity perturbations �u ∼ u, i.e. the flow in region 1 is fully nonlinear.
Therefore the shock strength should be such that

�p ∼ u2 ∼ l2/3
s . (5.11)

Using the continuity equation we have

�u

�x
∼ v

�y
=⇒ v ∼ Re−1/2 l2/3

s

�x
,

where �x denotes the longitudinal extent of the interaction region. The slope of the
streamlines generated by the flow deceleration in region 1 may be estimated as

ϑ ∼ v

u
∼ Re−1/2 l1/3

s

�x
.

Using the order-of-magnitude arguments for the flow in the middle tier (region 2)
it may be shown that the streamline slope does not change across region 2. Therefore
this formula may be also used to estimate the streamline slope at the ‘bottom’ of
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region 3. In this region the induced pressure can be calculated using the Ackeret
formula, which gives

�p ∼ ϑ ∼ Re−1/2 l1/3
s

�x
. (5.12)

Comparing (5.11) with (5.12) we find that the longitudinal extent of the interaction
region

�x ∼ Re−1/2 l−1/3
s .

For all ls � Re−3/8 the separation ls of the interaction region from the trailing edge
appears to be much larger than its size �x.

Turning to rigorous asymptotic analysis of the flow in the interaction region we
introduce a small parameter

ε = l1/3
s

and represent the solution in the lower tier (region 1) in the form of the asymptotic
expansions

u(x, y, Re; ε) = εU ∗(X∗, Y∗) + · · · , v(x, y, Re; ε) = εV ∗(X∗, Y∗) + · · · ,
p(x, y; Re, ε) = ε2P ∗(X∗, Y∗) + · · · , ρ(x, y; Re, ε) = ρw + O(ε2),

h(x, y; Re, ε) = hw + O(ε2), µ(x, y; Re, ε) = µw + O(ε2),


 (5.13)

where the scaled independent variables X∗, Y∗ are introduced by means of

x = 1 + ε3 + Re−1/2ε−1X∗, y = Re−1/2εY∗. (5.14)

Substitution of (5.13), (5.14) into the Navier–Stokes equations shows that P ∗ does
not depend on Y∗ and reduces the momentum and continuity equations to

ρwU ∗ ∂U ∗

∂X∗
+ ρwV ∗ ∂U ∗

∂Y∗
= −∂P ∗

∂X∗
, (5.15a)

∂U ∗

∂X∗
+

∂V ∗

∂Y∗
= 0. (5.15b)

Notice that the flow in region 1 appears to be inviscid.
The initial condition for equations (5.15)

U ∗ =
1

ρw

g′(Y∗) + · · · as X∗ → −∞ (5.16)

follows from matching with solution (5.7) in region B .
To complete the formulation of the problem we need to supplement equations

(5.15), (5.16) with the interaction law. It is deduced by analysing the flow in region
3 and its counterpart, region 3′, situated below the wake. Similar to (2.22), (2.25) we
can write

P ∗
+ = 2P̄ sH (X∗ − X̄s) +

1√
M2

∞ − 1
lim

Y∗→∞

V ∗

U ∗ , (5.17a)

P ∗
− = − 1√

M2
∞ − 1

lim
Y∗→−∞

V ∗

U ∗ , (5.17b)

and since the pressure does not change across the wake,

P ∗
+ = P ∗

− for all X∗ ∈ (−∞, ∞). (5.18)
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The interaction problem (5.15)–(5.17) can be converted, as before, into symmetrical
form. For this purpose the Prandtl transposition is used

X̄ = X∗, Ȳ = Y∗ − F (X̄),

U ∗ = Ū , V ∗ = V̄ +
dF

dX̄
Ū , P ∗ = P̄ ,

where the function F (X̄) should be chosen to be

F (X̄) =

{
0 if X̄ < X̄s,

−
√

M2
∞ − 1 P̄ s(X̄ − X̄s) if X̄ � X̄s,

The momentum (5.15a) and continuity (5.15b) equations are invariant with respect
to this transformation

Ū
∂Ū

∂X̄
+ V̄

∂Ū

∂Ȳ
= − 1

ρw

dP̄

dX̄
, (5.19a)

∂Ū

∂X̄
+

∂V̄

∂Ȳ
= 0. (5.19b)

The initial condition (5.16) also remains unchanged

Ū =
1

ρw

g′(Ȳ ) + · · · as X̄ → −∞. (5.19c)

The symmetry condition may be written as

V̄ = 0 at Ȳ = 0, (5.19d)

and, finally, the interaction law (5.17), (5.18) turns into

P̄ = P̄ sH (X̄ − X̄s) +
1√

M2
∞ − 1

lim
Ȳ→∞

V̄

Ū
. (5.19e)

In order to solve the interaction problem (5.19) we shall use the Von Mises’
variables. Based on the continuity equation (5.19b) we introduce the stream function
ψ̄ such that

∂ψ̄

∂Ȳ
= ρwŪ,

∂ψ̄

∂X̄
= −ρwV̄ , (5.20)

and instead of (X̄, Ȳ ) use as independent variables (X̄, ψ̄). This transformation
converts the momentum equation (5.19a) to

Ū
∂Ū

∂X̄
= − 1

ρw

dP̄

dX̄
.

Being integrated, it yields the Bernoulli equation

1
2
Ū 2 +

P̄

ρw

= 1
2
[Ū 0(ψ̄)]2, (5.21)

where function Ū 0(ψ̄) represents the initial velocity profile (5.19c) expressed via the
stream function ψ̄ .

The continuity equation (5.19b), written in the Von Mises’ variables, has the form

∂

∂ψ̄

(
V̄

Ū

)
=

1

ρw

∂

∂X̄

(
1

Ū

)
. (5.22)
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Solving the Bernoulli equation (5.21) for Ū

Ū =

√
[Ū 0(ψ̄)]2 − 2

ρw

P̄ (X̄) (5.23)

and using (5.23) to calculate the right hand side in (5.22) we can find, after integrating
with respect to ψ̄ , that the streamline slope angle

V̄

Ū
=

1

ρ2
w

dP̄

dX̄

∫ ψ̄

0

{
[Ū 0(ψ)]2 − 2

ρw

P̄ (X̄)

}−3/2

dψ. (5.24)

It remains to set ψ̄ = ∞ in (5.24) and substitute the resulting formula into the
interaction law (5.19e). We arrive at the following integro-differential equation:

P̄ = P̄ sH (X̄ − X̄s) +
1

ρ2
w

√
M2

∞ − 1

dP̄

dX̄

∫ ∞

0

{
[Ū 0(ψ̄)]2 − 2

ρw

P̄ (X̄)

}−3/2

dψ̄ (5.25)

for the pressure P̄ (X̄).
When solving this equation one needs to know the initial velocity profile Ū 0(ψ̄)

in terms of the stream function ψ̄ . In the original variables it is given by (5.19c).
Comparing (5.19c) with the first of equations (5.20) we can find that ψ̄ = g(Ȳ ). Hence,
the initial velocity profile Ū 0(ψ̄) may be written in the following implicit form

Ū 0(ψ̄) =
1

ρw

g′(Ȳ ), ψ̄ = g(Ȳ ). (5.26)

Guided by (5.26) we return to equation (5.8) and seek its solution in the form

g′(Ȳ ) = ρwŪ [g(Ȳ )]. (5.27)

Substitution of (5.27) into (5.8) results in the following equation for Ū (ψ̄):

1
3
Ū 2

0 − 1
3
ψ̄
(
Ū 2

0

)′
= 1

2
µwρwŪ 0

(
Ū 2

0

)′′
, (5.28)

with the boundary conditions (5.9), (5.10) turning to

Ū ′
0 = 0 at ψ̄ = 0, (5.29a)

Ū 0 =

√
2λ

ρw

ψ̄ + · · · as ψ̄ → ∞. (5.29b)

The affine transformations

Ū 0 = λ2/3ρ−1/3
w µ1/3

w u0, ψ̄ = λ1/3ρ1/3
w µ2/3

w ψ (5.30)

allow parameters µw , ρw and λ to be excluded from the formulation of the boundary-
value problem (5.28), (5.29). We have

2
3
u2

0 − 2
3
ψ
(
u2

0

)′
= u0

(
u2

0

)′′
,

u′
0 = 0 at ψ = 0,

u0 =
√

2ψ + · · · as ψ → ∞.

If in addition to (5.30) we use transformations

P̄ = λ4/3ρ1/3
w µ2/3

w p, X̄ = X̄s + λ−5/3ρ−2/3
w µ−1/3

w

(
M2

∞ − 1
)−1/2

x, (5.31)
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then the integro-differential equation (5.25) takes the following canonical form:

p = psH (x) +
dp

dx

∫ ∞

0

(
u2

0 − 2p
)−2/3

dψ, (5.32a)

where

ps =
P̄ s

λ4/3ρ
1/3
w µ

2/3
w

proves to be the only non-dimensional parameter that governs the flow in the
interaction region.

Similar to the triple-deck problem (2.34) we shall impose on the solution of equation
(5.32a) the following downstream boundary condition

p = ps at x = ∞. (5.32b)

When solving (5.32a) one has to keep in mind that according to the Bernoulli equation
(5.21) the pressure rise in the interaction region is restricted by the condition

[Ū 0(ψ̄)]2 − 2

ρw

P̄ (X̄) � 0.

Taking into account that the initial velocity profile has its minimum at the wake axis,
we can conclude that the critical value of the shock strength

P̄ ∗
s =

ρw

2
[Ū 0(0)]2.

Using further affine transformations (5.30), (5.31) yields the critical value of parameter
ps:

p∗
s = 1

2
u2

0

∣∣
ψ=0

,

beyond which the solution of equation (5.32a), apparently, does not exist.
The results of the numerical solution of problem (5.32) are displayed in figure 11. We

found that for all ps <p∗
s the pressure grows monotonically upstream of the shock. At

the shock position the derivative dp/dx has a discontinuity, and the pressure remains
constant and equal to ps everywhere downstream of the shock. When the parameter
ps approaches the critical value p∗

s , the perturbations start to propagate very fast in
the upstream direction. It is interesting to notice that the solutions corresponding to
ps/p

∗
s = 0.99; 0.999 and 0.9999 are essentially the same. The only difference between

them is a shift in the x-direction. By this stage the distribution of pressure (and, hence,
all other functions) takes a universal form characteristic of the so-called ‘self-induced
wake breakdown’ which will be considered in the next section.

Before doing this we shall return to the triple-deck calculations of § 4, and observe
that the wake breakdown prediction based on the Bernoulli equation may be directly
linked to the hysteresis behaviour of the trailing-edge flow, as shown in figures 5 and
6. If, with fixed shock position Xs > 3.2, we monotonically increase the shock strength
Ps , then as long as the solution remains on the upper branch the flow in the wake
experiences a deceleration but the velocity U remains positive everywhere. This type
of solution becomes impossible when the shock strength Ps reaches a critical value,
which we shall denote as P �

s , and the solution ‘jumps’ to the lower branch with an
extended region of flow reversal. It is shown for different Xs in figures 8(e) and 8(f );
the breakdown point being situated some distance upstream of Xs .
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Figure 11. Results of numerical solution of equation (5.32a) with boundary condition (5.32b).
The six curves shown correspond to, from right to left, ps/p

∗
s = 0.3; 0.6; 0.9; 0.99; 0.999 and

0.9999.

xs P ∗
s P �

s

3.4 2.86052 2.71774
3.8 3.08616 2.95223
4.2 3.30416 3.19986
4.6 3.51546 3.44665

Table 2. Hysteresis predictions from Bernoulli equation.

In table 2 we compare P �
s with the critical shock strength P ∗

s calculated based on
the Bernoulli equation

P ∗
s = 1

2
[U (Xs, 0)]2.

Here U (Xs, 0) is the velocity on the wake axis at the shock position Xs calculated
using the triple-deck code of § 3 in the flow with no impinging shock (Ps = 0).

It can be seen that the value found from our triple-deck calculations, P �
s , is close to

that predicted by Bernoulli’s equation which bounds it from above. As we move the
shock further downstream P �

s and P �
s appear to converge confirming the shock/wake

interaction becomes predominantly inviscid. This suggests, interestingly enough, that
the Bernoulli equation may be used as a simple practical tool for predicting the wake
breakdown.

It is also interesting to notice that the pressure inside the wake appears to be
continuous both in the inviscid–inviscid interaction flow regime considered here and
in the case of classical viscous–inviscid interaction discussed in § § 2–4; see the pressure
curve in figure 4. Of course, due to the presence of the shock the flow field remains
discontinuous everywhere above the wake. However, as the wake is approached the
shock becomes progressively weaker, being compensated by the reaction of the flow
inside the wake. The fact is that, as long the velocity on the wake axis is small as
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compared to the free-stream velocity, the wake may be shown to be incapable of
sustaining an infinite pressure gradient that would be observed if the shock could
penetrate into the wake. It therefore adjusts itself in such a way that the discontinuity
brought about by the first term on the right hand side of (3.10) is annulled by the
second term representing the displacement effect of the boundary layer.

6. Self-induced wake breakdown
Here we shall assume that the shock strength exceeds the critical value, and an

extended region of flow reversal forms in the wake with the breakdown point situated
some distance upstream of the shock position. If this distance is much larger than the
extent of the inviscid–inviscid interaction region, that forms around the breakdown
point, then the process of fluid deceleration in the wake may be described by equation
(5.25) without the shock term:

P̄ =
1

ρ2
w

√
M2

∞ − 1

dP̄

dX̄

∫ ∞

0

{
[Ū 0(ψ̄)]2 − 2

ρw

P̄ (X̄)

}−3/2

dψ̄. (6.1)

We shall first concentrate on finding the asymptotic behaviour of the solution of (6.1)
as the flow approaches the breakdown point.

6.1. Asymptotic solution of inviscid–inviscid interaction equation

Using arguments similar to those in Watson’s lemma, it may be proven that the
dominant contribution to the integral

I =

∫ ∞

0

{
[Ū 0(ψ̄)]2 − 2

ρw

P̄ (X̄)

}−3/2

dψ̄ (6.2)

is given by a small vicinity of the wake axis, where

Ū 0(ψ̄) = a + bψ̄2 + · · · as ψ̄ → 0; (6.3)

both constants a and b being positive.
To prove this statement, we write the integral in the form

I =

∫ ∞

0

{
[Ū 0(ψ̄)]2 − a2 +

[
a2 − 2

ρw

P̄ (X̄)

]}−3/2

dψ̄ (6.4)

and assume that

ε(X̄) =

√
a2 − 2

ρw

P̄ (X̄) (6.5)

tends to zero. We then introduce δ(X̄) such that ε � δ � 1, and split the integral
(6.4) into two:

I =

∫ δ

0

{[Ū 0(ψ̄)]2 − a2 + ε2}−3/2 dψ̄ +

∫ ∞

δ

{[Ū 0(ψ̄)]2 − a2 + ε2}−3/2 dψ̄.

Since δ � 1, the first integral may be calculated using asymptotic expansion (6.3).
Disregarding O(ψ̄4) terms, we have

I1 =

∫ δ

0

{[Ū 0(ψ̄)]2 − a2 + ε2}−3/2 dψ̄ =

∫ δ

0

dψ̄

(2abψ̄2 + ε2)−3/2
. (6.6)
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In this integral the ballance between 2abψ̄2 and ε2 is important, which is why (with
δ being much larger than ε) the integration interval ψ̄ ∈ [0, δ] covers the entire
region of dominant contribution in (6.2). Keeping this in mind, we introduce a new
integration variable s = ψ̄/ε, and calculate integral (6.6) as

I1 =
1

ε2

∫ δ/ε

0

ds

(2abs2 + 1)3/2
=

1

ε2

s√
2abs2 + 1

∣∣∣∣
δ/ε

0

=
1

ε2
√

2ab
. (6.7)

Turning to the second integral

I2 =

∫ ∞

δ

{[Ū 0(ψ̄)]2 − a2 + ε2}−3/2 dψ̄,

we note that both [Ū 0(ψ̄)]2 −a2 and ε2 are positive. Consequently, I2 may be bounded
as

|I2| �

∫ ∞

δ

dψ̄

{[Ū0(ψ̄)]2 − a2}3/2
. (6.8)

We then divide the integral in (6.8) into two:∫ ∞

δ

dψ̄

{[Ū0(ψ̄)]2 − a2}3/2
=

{∫ 1

δ

+

∫ ∞

1

}
dψ̄

{[Ū0(ψ̄)]2 − a2}3/2
. (6.9)

Taking into account that Ū0(ψ̄) grows monotonically with ψ̄ , and at small ψ̄ is given
by (6.3), one can see that there exists constant A > 0 such that

[Ū0(ψ̄)]2 − a2 � Aψ̄2 for ψ̄ ∈ [0, 1].

Hence, ∣∣∣∣
∫ 1

δ

dψ̄

{[Ū0(ψ̄)]2 − a2}3/2

∣∣∣∣ �
1

A3/2

∫ ∞

δ

dψ̄

ψ̄3
=

1

2A3/2

(
1

δ2
− 1

)
. (6.10)

The second integral in (6.9) is finite, and therefore, for any δ � 1 appears to be much
smaller than the first integral (6.10). The latter is obviously small compared to (6.7)
as long as ε � δ.

Therefore, substituting (6.5) into (6.7) we can finally write∫ ∞

0

{
[Ū 0(ψ̄)]2 − 2

ρw

P̄ (X̄)

}−3/2

dψ̄ =
1√

2ab
[
a2 − (2/ρw)P̄ (X̄)

] . (6.11)

With (6.11) equation (6.1) takes the form

P̄ =
1

ρ2
wβ

√
2ab
[
a2 − (2/ρw)P̄ (X̄)

] dP̄

dX̄
,

where β =
√

M2
∞ − 1. This equation is easily integrated using the separation of

variables. Its solution has the form

P̄ = 1
2
ρwa2 1

1 + e−κX̄+C
, (6.12)

where κ =
√

2ρ2
wβa5/2b1/2. Hence, the sought asymptotic behaviour of pressure is

given by

P̄ = 1
2
ρwa2(1 − e−κX̄) + · · · as X̄ → ∞. (6.13)
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Here it has been taken into account that (6.1) is invariant with respect to an
arbitrary shift in X̄-direction, and therefore, without loss of generality the constant
of integration C may be disregarded in (6.12).

With known pressure all other functions in the inviscid-inviscid interaction region
may be easily found. In particular, substitution of (6.3) and (6.13) into (5.23) yields

Ū = exp
(
− 1

2
κX̄
)√

a2 + 2abξ 2 + · · · as X̄ → ∞. (6.14)

Here

ξ =
ψ̄

exp
(
− 1

2
κX̄
) (6.15)

has to be assumed an order-one quantity if the entire region of dominant contribution
to the displacement effect of the wake is to be considered.

6.2. Viscous region

Formula (5.23) shows that inviscid theory is incapable of describing the flow reversal
characteristic of the wake breakdown. At the same time it follows from (6.12) that
the fluid motion becomes very slow as X̄ increases, and therefore viscosity effects
have to be taken into account near the point of breakdown. We shall concentrate
our attention on the region of slow motion that gives the main contribution to the
displacement effect of the wake. In this region ξ = O(1), and it follows from (6.14)
and (6.15) that

Ū = O
[
exp
(
− 1

2
κX̄
)]

, ψ̄ = O
[
exp
(
− 1

2
κX̄
)]

.

Hence, using the first of equations (5.20), we can conclude that

Ȳ = O(1). (6.16)

Let us now compare the pressure gradient with the “main” viscous term in the
x-momentum Navier–Stokes equation

∂p

∂x
∼ 1

Re

∂2u

∂y2
. (6.17)

Using (5.13), (5.14) and (6.13) we can find that

∂p

∂x
= ε3Re1/2 ∂P ∗

∂X∗ = ε3Re1/2 ∂P̄

∂X̄
∼ ε3Re1/2e−κX̄. (6.18)

Similarly, it follows from (5.13), (5.14), (6.14) and (6.16) that

1

Re

∂2u

∂y2
=

1

ε

∂2U ∗

∂Y ∗2
=

1

ε

∂2Ū

∂Ȳ
∼ 1

ε
exp
(
− 1

2
κX̄
)
. (6.19)

Substituting (6.18) and (6.19) into (6.17), we see that the balance between the pressure
gradient and viscous term holds if

e
1
2 κX̄ = Λε4Re1/2,

where Λ is an order one quantity.
Solving the above equation for X̄ we find

X̄ =
2

κ
ln
(
ε4Re1/2

)
+

2

κ
ln Λ,
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which suggests that the characteristic longitudinal variable X◦ in the viscous region
should be defined by the equation

X̄ =
2

κ
ln
(
ε4Re1/2

)
+ X◦. (6.20)

Substituting (6.20) into (6.15) and taking into account that ξ = O(1) we can see that
the scaled stream function in the viscous region ψ◦ has to be such that

ψ̄ = ε−4Re−1/2ψ◦. (6.21)

Substitution of (6.20) and (6.21) into (6.14) and then into the asymptotic expansion
for u(x, y; Re, ε) in (5.13) yields

u(x, y; Re, ε) = ε−3Re−1/2 exp
(
− 1

2
κX◦)√a2 + 2abξ 2 + · · · ,

which means that in the viscous region the longitudinal velocity component should
be sought in the form of asymptotic expansion

u(x, y; Re, ε) = ε−3Re−1/2U ◦ + · · · ,

where function U ◦ satisfies the following matching condition

U ◦ = exp
(
− 1

2
κX◦)√a2 + 2abξ 2 + · · · as X◦ → −∞. (6.22)

The self-similar variable (6.15) may be calculated using (6.20), (6.21) as

ξ =
ψ◦

exp
(
− 1

2
κX◦
) . (6.23)

Using similar arguments for pressure we can find from (6.13) that in the viscous
region

p(x, y; Re, ε) = ε2 1
2
ρwa2 + ε−6Re−1P ◦ + · · · ,

with the matching condition for P ◦ being

P ◦ = − 1
2
ρwa2 exp(−κX◦) + · · · as X◦ → −∞.

Combining (5.14) with (6.16) and (6.20) we see that independent variables in the
viscous region

x = 1 + ε3 + ε−1Re−1/2 2

κ
ln
(
ε4Re1/2

)
+ ε−1Re−1/2X◦, y = εRe−1/2Y ◦. (6.24)

It remains to estimate the lateral velocity component. This may be done based on the
continuity equation

∂v

∂y
∼ ∂u

∂x
=⇒ v ∼ u

y

�x
∼ ε−1Re−1/2.

Summarising these results we seek the solution of the Navier–Stokes equations in
the viscous region in the form

u(x, y; Re, ε) = ε−3Re−1/2U ◦(X◦, Y ◦) + · · · ,
v(x, y; Re, ε) = ε−1Re−1/2V ◦(X◦, Y ◦) + · · · ,
p(x, y; Re, ε) = ε2 1

2
ρwa2 + ε−6Re−1P ◦(X◦, Y ◦) + · · · ,

ρ(x, y; Re, ε) = ρw + O(ε−6Re−1),

µ(x, y; Re, ε) = µw + O(ε−6Re−1).




(6.25)
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Substitution of (6.25) together with (6.24) into the Navier-Stokes equation results in
the incompressible boundary-layer equations

ρw

(
U ◦ ∂U ◦

∂X◦ + V ◦ ∂U ◦

∂Y ◦

)
= −dP ◦

dX◦ + µw

∂2U ◦

∂Y ◦2
,

∂U ◦

∂X◦ +
∂V ◦

∂Y ◦ = 0.


 (6.26)

The initial condition for the longitudinal velocity component U ◦ is given by (6.22).
To express it in Cartesian coordinates we substitute (6.23) into (6.22)

U ◦ = exp
(
− 1

2
κX◦)√a2 + 2ab

ψ◦2

exp(−κX◦)
+ · · · as X◦ → −∞. (6.27)

and note that the stream function ψ◦ satisfies the equations

∂ψ◦

∂Y ◦ = ρwU ◦,
∂ψ◦

∂X◦ = −ρwV ◦.

Combining the first of them with (6.27) yields

∂ψ◦

∂Y ◦ = ρw exp
(
− 1

2
κX◦)√a2 + 2ab

ψ◦2

exp(−κX◦)
+ · · · as X◦ → −∞.

This equation may be easily integrated for ψ◦ subject to the boundary condition
ψ◦ = 0 at Y ◦ − 0. We have

ψ◦ =

√
a

2b
exp
(
− 1

2
κX◦) sinh(ρw

√
2ab Y ◦) + · · · as X◦ → −∞,

and the sought initial condition for U ◦ is written as

U ◦ = a exp
(
− 1

2
κX◦) cosh(ρw

√
2ab Y ◦) + · · · as X◦ → −∞, (6.28)

The boundary conditions on the wake axis are

∂U ◦

∂Y ◦ = V ◦ = 0 at Y ◦ = 0, (6.29)

and to close the problem we have to formulate the interaction law. In the inviscid
flow outside the wake the Ackeret formula

p =
ϑ

β
, where ϑ = arctan

(
v

u

)
(6.30)

is valid. Substitution of (6.25) into (6.30) yields

lim
Y ◦→∞

V ◦

U ◦ = 1
2
βρwa2. (6.31)

Thus the interaction problem consists in solving equations (6.26) with boundary
conditions (6.28), (6.29) and interaction law (6.31). It resembles the corresponding
problem formulated by Sychev, Vic. V. (1978) who studies the wake breakdown in
incompressible fluid flow. It is remarkable that the solution may be written in
analytical form

U ◦ = a exp
(
− 1

2
κX◦) cosh(ρw

√
2ab Y ◦) − 4

κ
µwρwab,
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V ◦ =
κa1/2

ρw

√
8b

exp
(
− 1

2
κX◦) sinh(ρw

√
2ab Y ◦),

P ◦ = −ρwa2

2
exp(−κX◦).

It follows from the expression for U ◦ that flow reversal first forms near the axis of
symmetry, and then as X◦ increases, it spreads to a wider portion of the wake.

7. Concluding remarks
The analysis presented in this paper shows that the interaction of a shock wave

with the wake downstream of a flat plate is a complex phenomenon. If the shock
impinges upon the wake close to the trailing edge then the triple-deck theory may
be used. In this case the flow is viscous and displays a hysteresis behaviour which,
in our view, may be explained by a sharp acceleration on the background wake
flow downstream of the trailing edge. The deceleration of fluid in the wake caused
by the shock depends on its strength, but as long as the solution remains on the
upper branch no flow reversal is observed in the wake core. However, when the shock
strength reaches a critical value the solution has to jump to the lower branch. This
is accompanied by complete reconstruction of the flow field. In particular, a reversed
flow region suddenly forms, being of an ‘adult size at the birth’.

If, on the other hand, the shock is situated further downstream, then the shock/wake
interaction proves to be predominantly inviscid. Due to this simplification the
interaction problem may be reduced to a single integro-differential equation governing
the pressure distribution along the interaction region. We found that the pressure
grows monotonically as the shock position is approached, and then remains constant
everywhere downstream of the shock. Correspondingly, the fluid velocity inside the
wake decays monotonically, as the Bernoulli equation predicts, and reaches its
minimum on the wake axis at the shock position. This observation allows for a
simple criterion of the wake breakdown to be formulated. The breakdown takes place
when the shock strength is large enough to reduce the minimal velocity to zero. The
accuracy of the predictions based on the Bernoulli equation may be improved, if
necessary, by analysing a viscous region that forms in the wake near the point of flow
reversal. The flow in this region is governed by the boundary-layer equations with
prescribed displacement function. We found that the streamline slope and, hence, the
pressure should remain constant in this region. It is remarkable that the solution of
the corresponding boundary-value problem admits an analytical solution.

Appendix
In order to study asymptotic behaviour of the solution of equations (2.10) at large

values of Y∗, it is convenient to introduce the stream function Ψ ∗(x∗, Y∗). Its existence
follows from the continuity equation (2.10b), and we can write

U ∗ =
∂Ψ ∗

∂Y∗
, V ∗ = −∂Ψ ∗

∂x∗
. (A 1)

Let us try to use for the stream function the following asymptotic expansion

Ψ ∗(x∗, Y∗) = A0(x∗)Y
α
∗ + · · · as Y∗ → ∞. (A 2)
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Here parameter α and function A0(x∗) are expected to be found by using the
momentum equation (2.10a).

Substitution of (A 2) into (A 1) yields

U ∗ = αA0(x∗)Y
α−1
∗ + · · · , V ∗ = −A′

0(x∗)Y
α
∗ + · · · . (A 3)

Therefore, the convective terms on the left hand side of (2.10a) and the viscous term
on the right hand side are written as

ρwU ∗ ∂U ∗

∂x∗
= ρwαA0

dA0

dx∗
Y 2α−2

∗ + · · · ,

ρwV ∗ ∂U ∗

∂Y∗
= −ρwα(α − 1)A0

dA0

dx∗
Y 2α−2

∗ + · · · ,

µw

∂2U ∗

∂Y 2
∗

= α(α − 1)(α − 2)A0Y
α−3
∗ + · · · .

We see that if we assume, subject to subsequent confirmation, that α > 1, then the
convective terms will dominate not only over the viscous term, but also over the
pressure gradient, which remains finite as Y∗ → ∞. We have

O(Y 2α−2
∗ ) : A0

dA0

dx∗
= 0.

The initial condition for this equation may be obtained by comparing the first of
formulae (A 3) with (2.12). We have

A0(−∞) =

{
λ/α if α = 2,

0 if α = 2.

Hence a non-trivial solution exist only if α = 2, in which case A0 = 1
2
λ, and (A 2)

turns into

Ψ ∗(x∗, Y∗) = 1
2
λY 2

∗ + · · · as Y∗ → ∞.

Now we shall try to find the next order term in this expansion:

Ψ ∗(x∗, Y∗) = 1
2
λY 2

∗ + A1(x∗)Y
α
∗ + · · · as Y∗ → ∞. (A 4)

In order to ensure that the second term in (A 4) is small as compared with the first
one, we have to assume that α < 2. Substitution of (A 4) into (A 1) yields

U ∗ = λY∗ + αA1(x∗)Y
α−1
∗ + · · · , V ∗ = −A′

1(x∗)Y
α
∗ + · · · .

Therefore, the convective terms on the left hand side of (2.10a) and the viscous term
on the right hand side are written as

ρwU ∗ ∂U ∗

∂x∗
= ρwλα

dA1

dx∗
Y α

∗ + · · · ,

ρwV ∗ ∂U ∗

∂Y∗
= −ρwλ

dA1

dx∗
Y α

∗ + · · · ,

µw

∂2U ∗

∂Y 2
∗

= α(α − 1)(α − 2)A1Y
α−3
∗ + · · · .

We see that the convective terms remain dominant provided that α > 0, in which case
the momentum equation (2.10a) reduces at

O(Y α
∗ ) : (α − 1)

dA1

dx∗
= 0.
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Since the initial condition (2.12) does not contain any terms except the one which
matches with the leading order term in (A 4), we have to conclude that

A1(−∞) = 0.

We see that a non-trivial solution for A1 exists only if α = 1. Function A1(x∗) remains
arbitrary in the framework of the asymptotic analysis of equations (2.10a). We, of
course, expect that this function will be found as a part of the solution of the
viscous–inviscid interaction problem as a whole.

Redenoting A1(x∗) as A(x∗) renders (A 4) in the form

Ψ ∗ = 1
2
λY 2

∗ + A(x∗)Y∗ + · · · as Y∗ → ∞. (A 5)
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